MusicPlot: Interactive Self-Similarity Matrix for Music Structure
Visualization

Wilson Louie*
Massachusetts Institute of Technology

MusicPlot

View on Gittub (&)

Piano |

ginarize simiariy [| S— o050

o 5
e GF g ot [Rle T [Tw el

Piano Il §Wg = ‘ ‘ ‘ LS ‘ S ‘
SO CLi ot
o R R |4 ST Pldt—=prlter et el
Poo. 11 é% = ‘ ‘ 13 ‘ 13
i m
o (64 STy [T Jﬂ\mmu JT
Pno. 11 é“###m ¥ ’m ¥ [m" ‘ ‘m 8 ‘
o1]@W 8 ﬂm = LM‘W f uﬁw R “m mr‘ m‘

Akt e

¥

v [

Figure 1: Example view of the MusicPlot interface. Users start by choosing the piece of music they wish to visualize via the top
drop-down menu. The left panel shows a configurable self-similarity matrix representation between two instrumental parts of the
piece, and the right panel shows the conventional music sheet representation with audio playback functionality. The two views are in
sync, such that user interactions on one panel would reflect accordingly in the other panel.

ABSTRACT

Self-similarity matrix representations of music has been shown to
enable identification of structural and rhythmic elements by visual
inspection. However, previous efforts in visualizing symbolically
encoded music this way aim to visualize all, or most, instrumental
parts of the opus as a single image, by overlaying multiple similarity
matrices and introducing a myriad of color encoding. The result
is something that can be difficult to decipher. Furthermore, from
just the standalone matrix image, it becomes difficult to pinpoint the
exact locations in the original piece a particular matrix cell is meant
to represent. Here, we propose an interactive music visualization
system that addresses these shortcomings. We anticipate that this
visualization system would enable even laymen who cannot read
musical notation to track and appreciate the structure of a piece of
music.

1 INTRODUCTION

Although music is inherently an auditory phenomenon, there has

been considerable interest in converting music into a visual medium.

Previous efforts include artistic attempts of realizing images from
sound [1], quantitative approaches via rendering of time and/or

*e-mail: wilsonlouiel @gmail.com

frequency content of an audio signal using methods such as the
oscillograph and sound spectrograph [5,7,9], and visualization of
symbolically encoded music, typically from MIDI note events and
files [6,10]. The motivation to build these systems range from purely
entertainment or educational, to the potential applications to music
categorization and automated retrieval systems [3,4].

Leveraging the observation that structure and repetition is a
general feature of nearly all music, others attempt to employ self-
similarity matrices (SSM) to visualize music [2, 11]. In these ap-
proaches, the music signal is first converted into a suitable feature
sequence. Each element of the feature sequence is then compared
with all other elements in the sequence, and the results are organized
in a matrix where each cell at positions i and j expresses the similar-
ity between elements i and j of the music feature sequence. This can
then be converted into an image by encoding the similarity values
in each cell by color. Because similar segments of feature vectors
tend to show up as paths of high similarity along and off diagonals
of the SSM [8], musical structures and patterns can be elucidated
visually. However, especially for long musical pieces that have corre-
spondingly large SSMs, it can be difficult for one to corroborate the
exact segments in the original piece a particular matrix cell is meant
to represent. Moreover, a composition usually consists of several
separated channels of musical information, but previous efforts aim
to visualize them as a single image, by overlaying multiple similarity
matrices and utilizing a large number of color encoding [11]. The
resulting image can thus become hard to interpret due to the clutter.
Another issue is ease of access, as previous work either just present

the technique without a public implementation, or the implemen-
tation is no longer hosted for public consumption. An interactive
web-based SSM interface that allows the user to selectively explore
musical channels and to associate with the original music would
alleviate these issues.

In this paper, we present MusicPlot, a web-based interface fea-
turing SSMs for interactive exploration of music structure (Fig. 1).
This system takes as a MIDI file as input, and generates a SSM view
that is synced with a music sheet and audio player view. Rather than
presenting a single potentially complex SSM representing the entire
piece with all its musical channels, MusicPlot features configurable
toggle and filter controls to show similarities between pairs of mu-
sical channels at a time. The SSM is also enriched with single cell
resolution interactions that are synced with the sheet music view,
which preserves reference to the original musical context. Based on
generally positive reviews from seven people coming from a range
of musical backgrounds, we anticipate this system to be insightful
and enjoyable by laymen and musical experts alike.

2 RELATED WORK

The application of SSMs on music visualization was initially de-
scribed by Foote [2]. This approach takes as input a raw music
recording, and converts the signal into a feature sequence using cep-
stral analysis. The definition of similarity between a pair of feature
elements is based on vector autocorrelation. A SSM can then be con-
structed, by considering all pairwise similarities between elements of
the feature sequence and laying them out in a grid. Through several
case studies, the author demonstrated that structural and rhythmic
patterns of the music become apparent in the resulting SSM, and
alluded to applications of such a technique in music segmentation,
analysis, and tempo and structure extraction.

Inspired by this work, Wolkowicz et al. [11] proposed a very
similar technique, but for visualizing symbolically encoded music
stored in MIDI files. While Foote’s method uses a single channel
recording as input data, Wolkowicz et al. argue that symbolically
encoded music would produce more informative SSM visualizations,
as performance-dependent features are hidden and logical musical
channels are made explicit. Starting with an input MIDI file, their
system first extracts the musical tracks. For each musical track, it
extracts a series of notes representing the melody of each track. The
series of notes is then converted into a feature sequence of relative
pitch and relative duration between two consecutive notes. For
every pair of musical tracks, a SSM is generated from their feature
sequences, and the SSMs are overlayed as a single image. They
also alluded to options to select only a subset of the tracks to be
visualized, and an audio playback feature.

Our proposed MusicPlot builds off of ideas from both of these
works. Rather than returning static SSM images given musical inputs
as did previous works, our system provides SSM interactivity that
enables easier understanding, and grounds the user to the original
musical context by providing a synced music sheet and audio player
view.

3 METHODS

There are two major views in MusicPlot: a SSM panel and a refer-
ence music panel. The following sections describe the specifics of
the two views, the SSM construction method, and the interactivity
one can perform in MusicPlot.

3.1 Self-Similarity Matrix

Given an input MIDI file, MusicPlot generates SSMs that resembles
Wolkowicz et al.’s system [11]. At any given time, a SSM for one
pair of MIDI tracks (e.g. violin track vs. piano track) is shown.
A given MIDI file may have multiple musical tracks, so the user
needs to select a desired pair of tracks to compare using the available
toggle buttons. In our case, a SSM is a square matrix where each

Piano |

Similarity: 1.00

LL LT

.l...-. .I...I

Figure 2: A MusicPlot SSM representation of Beethoven’s Fir Elise.
Here, there are two piano tracks, and the SSM representation shown
compares the first piano track with itself. There are 31 measures of
music, so this SSM is a 31 x 31 matrix. The selected cell represents
the comparison between measure 6 (mg) of the top selected track and
measure 2 (m;) of the left selected track.

cell represents the similarity between two corresponding measures
of a pair of tracks (Fig. 2). More formally, consider a MIDI file
representing a composition with N measures of music. Each track in
the MIDI would have N measures of music. For every MIDI track,
we convert the N measures into N feature representations, yielding
us a feature sequence of length N for each track. The correspond-
ing SSM representation of two tracks (same or different) from the
MIDI file would be an N x N matrix, where cell (i, j) represents
the similarity between the feature representation of measure i (11;)
in the first track, and the feature representation of measure j (m;)
in the second track. White colored cells signify great similarities,
whereas black colored cells signify little similarities. Time proceeds
from the upper left corner to the lower right, e.g. the cell at the top
left corner represents the similarity between the first measures of
both tracks, and cells along the diagonal represent the comparison
between measures of the same rank. The following sections describe
our method of translating a MIDI track into a feature sequence of
length N, and our similarity measure, in more details.

3.1.1 Feature Sequence from MIDI

Our feature sequence generation from MIDI tracks is derived from
the notion of unigram as described by Wolkowicz et al. [11]. Given
a MIDI track, we first extract a sequence of notes representing the
melody of the track. Heuristically, we achieve this by retaining only
the highest note at a time frame, which allows us to handle chords
and concurrency in a single track. We then group these notes into
measures. Measures are not explicitly encoded in MIDI, but we can
unambiguously determine which notes belong to which measure
from the time signature of the MIDI (which effectively gives us
the number of quarter notes in a measure), the ticks per quarter
note (which gives us the number of ticks in a measure), and the
ticks duration of each MIDI note. To summarize, we have at this
point a conversion of a MIDI track into a sequence of measures,
where each measure consists of a sequence of MIDI notes, and
each note has a certain pitch and duration. More formally, we

have a sequence of measures [my,my, ...,my], where each measure
m; = [(p1,d1),(p2,d2), ..., (Pk,di),...] has some number of notes,
each with a pitch p; and duration d.

To make for more meaningful measure comparisons, we want
our final feature sequence to take into account melody and rhyth-
mic directions. To achieve this, we transform each measure in
our sequence from a series of pitch and duration, to a series
of relative pitch and relative duration. More formally, for each

measure m; = [(p1,d1), ..., (Pk.dk),...], we transform it into m} =
[(p2 —p1, Z—f), (P11 — Prs dfj—r‘),] Our final feature sequence

representation of the MIDI track becomes [m,m}, ..., mjy].

3.1.2 Similarity Measure

Let S; ; be the value at cell (i, j) in the SSM, which represents the
similarity between the feature representation m. and m; We define
S;,j to be the dice coefficient between the two:

2|mi Nty

I 4 o]

This definition constrains §; ; to be between 0 and 1, where 0
signifies the two measures are completely dissimilar, and 1 signifies
the measures are identical in relative pitch and relative duration of
notes.

3.1.3 Matrix Binarization

The resulting SSM is a matrix of similarity values, each a real value
between 0 (0% similar) and 1 (100% similar). To convert this matrix
into a visual image, we assign the color black to cells with similarity
of 0, the color white to cells with similarity of 1, and shades of gray
to similarity values in between. To make patterns more obvious,
MusicPlot has the option of binarizing the similarity values of the
matrix using a threshold, such that any cells with similarity values
above the threshold is colored white, and black otherwise. This
binarization feature is turned on by default, and can be configured
using the controls below the SSM (Fig. 1).

3.2 MusicPlot Interactivity

Aside from the track selection toggles and the binarization threshold
controls discussed in the sections above, users can hover over a
specific cell (i, j) of the SSM and glean the tooltip for information
about the measure numbers being compared, and the similarity value
of the comparison (Fig. 1). To ground the user in the original musical
context, the targeted measures are also highlighted in the music
sheet view. The user can click to select a cell, and the corresponding
measures of sheet music will be colored. The user can also use the
player controls above the sheet music to play the associated audio.

3.3 Results

To demonstrate the utility of MusicPlot in revealing interesting
musical structures and patterns from visual cues of SSM, we perform
a case study using J.S. Bach’s ”Aria” BWV988 (Fig. 3).

3.3.1 Example: J.S. Bach - "Aria” BWV988

From visual inspection alone, one can see that there are hierarchical
patterns within the piece. At the highest level, there seems to be
two distinct melodies within the piece, demarcated by the red and
blue regions. Within the first melody (red), there is a repetition
of melodic phrases a and b, signified by the off diagonal copy c.
Similarly this is the case for the second melody (blue) with regions
A and B signified by C. Square blocks signify contiguous repeats
of a certain pattern, represented by D. The other off-diagonal white
colored cells indicate similarities between specific isolated measures.
With the ability to also inspect the sheet music and access to the
audio playback in MusicPlot, one can easily corroborate these visual
cues with the relevant parts of the original music.

Figure 3: Annotated SSM of J.S. Bach - "Aria” BWV988. Just from the
SSM, one can see that there are generally two distinct melodies in
the piece (red and blue regions), and repeating patterns within these
melodies.

4 DiscussSION

We have presented MusicPlot, an interactive music visualization
system centered around SSMs. This system differs from previous
works mainly in that it is designed to make corroboration between
matrix cells and the original music explicit and easy. It is also a web-
based application with no installation requirements, which lowers
the barrier of access for many users.

We also presented an early version of this system to seven univer-
sity students of varying musical background, and received generally
positive feedback. The general consensus among laymen is that the
interface is friendly and fun, and the entire visualization concept
is interesting and intriguing. They really like that the SSM view is
synced with the audio player and sheet music view, which encour-
ages them to explore more. Those who are more musically inclined
are pleasantly surprised to see this unconventional way to explore
music, and draws parallel with how they think of musical structural
similarity to the SSM representation. The only negative feedback
is that there is a slight initial learning curve in understanding and
interpreting SSMs, but the tool becomes entertaining and didactic
thereafter. Thus, we expect MusicPlot to be insightful and enjoyable
by other laymen and musical experts alike.

5 FUTURE WORK

MusicPlot has many areas that can be expanded upon. For one,
custom inputs would be useful for users. At the time of writing,
MusicPlot preloads a list of MIDI files users can choose from, but
does not allow users to upload their own MIDI files for visualization.
We would like to implement some sort of custom input functionality
in the future. Secondly, MusicPlot currently only supports MIDI
files, but since the system applies a general approach to visualizing
symbolically encoded music, other forms of music encodings such
as ABC notation files and MusicXML can also be supported. If
we apply the data processing technique described by Foote [2],
we can in theory also support raw audio recording with limited
functionality on the sheet music view. Another area of improvement

is to add features useful for navigating the SSM. For example, adding
zoom interactions would be useful for investigating especially large
SSMs. The ability to multi-select cells, or to automatically select
connected blocks of cells on click, would also be useful. Another
useful extension is to add an easy to understand walk-through or
tutorial of interpreting SSMs and the general MusicPlot interface, as
that is something our small group of reviewers suggested would be
helpful for newcomers.

REFERENCES

[1]
[2]

[3]

[4

=

[5]

[6

=

[7

—

[8]

[9]
[10]

(11]

Disney. Fantasia. Buena Vista Pictures Distribution, Inc., 1940.

J. Foote. Visualizing music and audio using self-similarity. In Proceed-
ings of the seventh ACM international conference on Multimedia (Part
1), pp. 77-80, 1999.

S. Jun and E. Hwang. Music segmentation and summarization based
on self-similarity matrix. In Proceedings of the 7th international
conference on ubiquitous information management and communication,
pp. 14, 2013.

S. Jun, S. Rho, and E. Hwang. Music structure analysis using self-
similarity matrix and two-stage categorization. Multimedia Tools and
Applications, 74(1):287-302, 2015.

W. Koenig, H. Dunn, and L. Lacy. The sound spectrograph. The
Journal of the Acoustical Society of America, 18(1):19-49, 1946.

S. Malinowski and L. Turetsky. Music animation machine. Music
Worth Watching”,” http://www. musanim. com, 2011.

W. Moritz. Mary ellen bute: Seeing sound. Animation World, 1(2):29—
32, 1996.

M. Miiller and M. Clausen. Transposition-invariant self-similarity
matrices. In ISMIR, pp. 47-50, 2007.

K. Potter Ralph, G. A. Kopp, and H. C. Green. Visible speech, 1947.
S. M. Smith and G. N. Williams. A visualization of music. In Pro-
ceedings. Visualization’97 (Cat. No. 97CB36155), pp. 499-503. IEEE,
1997.

J. Wolkowicz, S. Brooks, and V. Keselj. Midivis: Visualizing music
pieces structure via similarity matrices. In Proceedings of the 2009
International Computer Music Conference, ICMC’09, pp. 53-6, 2009.

	Introduction
	Related Work
	Methods
	Self-Similarity Matrix
	Feature Sequence from MIDI
	Similarity Measure
	Matrix Binarization

	MusicPlot Interactivity
	Results
	Example: J.S. Bach - "Aria" BWV988

	Discussion
	Future Work

